AskDefine | Define compact

Dictionary Definition

compact adj
1 closely and firmly united or packed together; "compact soil"; "compact clusters of flowers" [ant: loose]
2 closely crowded together; "a compact shopping center"; "a dense population"; "thick crowds" [syn: dense, thick]
3 heavy and compact in form or stature; "a wrestler of compact build"; "he was tall and heavyset"; "stocky legs"; "a thick middle-aged man"; "a thickset young man" [syn: heavyset, stocky, thick, thickset]
4 briefly giving the gist of something; "a short and compendious book"; "a compact style is brief and pithy"; "succinct comparisons"; "a summary formulation of a wide-ranging subject" [syn: compendious, succinct, summary]


1 a small cosmetics case with a mirror; to be carried in a woman's purse [syn: powder compact]
2 a signed written agreement between two or more parties (nations) to perform some action [syn: covenant, concordat]
3 a small and economical car [syn: compact car]


1 have the property of being packable or compactable or of compacting easily; "This powder compacts easily"; "Such odd-shaped items do not pack well" [syn: pack]
2 compress into a wad; "wad paper into the box" [syn: pack, bundle, wad]
3 make more compact by or as if by pressing; "compress the data" [syn: compress, pack together] [ant: decompress]
4 squeeze or press together; "she compressed her lips"; "the spasm contracted the muscle" [syn: compress, constrict, squeeze, contract, press]

User Contributed Dictionary



  • a RP:
    • sense nouns /ˈkɒmpækt/, /"kQmp

Extensive Definition

In mathematics, a subset of Euclidean space Rn is called compact if it is closed and bounded. For example, in R, the closed unit interval [0, 1] is compact, but the set of integers Z is not (it is not bounded) and neither is the half-open interval [0, 1) (it is not closed).
A more modern approach is to call a topological space compact if each of its open covers has a finite subcover. The Heine–Borel theorem shows that this definition is equivalent to "closed and bounded" for subsets of Euclidean space. Note: Some authors such as Bourbaki use the term "quasi-compact" instead, and reserve the term "compact" for topological spaces that are Hausdorff and "quasi-compact".
A single compact set is sometimes referred to as a compactum; following the Latin second declension (neuter), the corresponding plural form is compacta.

History and motivation

The term compact was introduced by Fréchet in 1906.
It has long been recognized that a property like compactness is necessary to prove many useful theorems. It used to be that "compact" meant "sequentially compact" (every sequence has a convergent subsequence). This was when primarily metric spaces were studied. The "covering compact" definition has become more prominent because it allows us to consider general topological spaces, and many of the old results about metric spaces can be generalized to this setting. This generalization is particularly useful in the study of function spaces, many of which are not metric spaces.
One of the main reasons for studying compact spaces is because they are in some ways very similar to finite sets: there are many results which are easy to show for finite sets, whose proofs carry over with minimal change to compact spaces. It is often said that "compactness is the next best thing to finiteness". Here is an example:
  • Suppose X is a Hausdorff space, and we have a point x in X and a finite subset A of X not containing x. Then we can separate x and A by neighbourhoods: for each a in A, let U(x) and V(a) be disjoint neighbourhoods containing x and a, respectively. Then the intersection of all the U(x) and the union of all the V(a) are the required neighbourhoods of x and A.
Note that if A is infinite, the proof fails, because the intersection of arbitrarily many neighbourhoods of x might not be a neighbourhood of x. The proof can be "rescued", however, if A is compact: we simply take a finite subcover of the cover of A, then intersect the corresponding finitely many U(x). In this way, we see that in a Hausdorff space, any point can be separated by neighbourhoods from any compact set not containing it. In fact, repeating the argument shows that any two disjoint compact sets in a Hausdorff space can be separated by neighbourhoods -- note that this is precisely what we get if we replace "point" (i.e. singleton set) with "compact set" in the Hausdorff separation axiom. Many of the arguments and results involving compact spaces follow such a pattern.


Compactness of subsets of Rn

For any subset of Euclidean space Rn, the following four conditions are equivalent:
  • Every open cover has a finite subcover. This is the most commonly used definition.
  • Every sequence in the set has a convergent subsequence, the limit point of which belongs to the set.
  • Every infinite subset of the set has an accumulation point in the set.
  • The set is closed and bounded. This is the condition that is easiest to verify, for example a closed interval or closed n-ball.
In other spaces, these conditions may or may not be equivalent, depending on the properties of the space.
Note that while compactness is a property of the set itself (with its topology), closedness is relative to a space it is in; above "closed" is used in the sense of closed in Rn. A set which is closed in e.g. Qn is typically not closed in Rn, hence not compact.

Compactness of topological spaces

The "finite subcover" property from the previous paragraph is more abstract than the "closed and bounded" one, but it has the distinct advantage that it can be given using the subspace topology on a subset of Rn, eliminating the need of using a metric or an ambient space. Thus, compactness is a topological property. In a sense, the closed unit interval [0,1] is intrinsically compact, regardless of how it is embedded in R or Rn.
A topological space X is defined as compact if all its open covers have a finite subcover. Formally, this means that
for every arbitrary collection \_ of open subsets of X such that \bigcup_ U_\alpha \supseteq X, there is a finite subset J\subset A such that \bigcup_ U_i \supseteq X.
An often used equivalent definition is given in terms of the finite intersection property: if any collection of closed sets satisfying the finite intersection property has nonempty intersection, then the space is compact. This definition is dual to the usual one stated in terms of open sets.
Some authors require that a compact space also be Hausdorff, and the non-Hausdorff version is then called quasicompact.

Examples of compact spaces


Some theorems related to compactness (see the Topology Glossary for the definitions):
  • A continuous image of a compact space is compact.
  • The extreme value theorem: a continuous real-valued function on a nonempty compact space is bounded and attains its supremum.
  • A closed subset of a compact space is compact.
  • A compact subset of a Hausdorff space is closed.
  • A nonempty compact subset of the real numbers has a greatest element and a least element.
  • A subset of Euclidean n-space is compact if and only if it is closed and bounded. (Heine–Borel theorem)
  • A metric space (or uniform space) is compact if and only if it is complete and totally bounded.
  • The product of any collection of compact spaces is compact. (Tychonoff's theorem, which is equivalent to the axiom of choice)
  • A compact Hausdorff space is normal.
  • Every continuous map from a compact space to a Hausdorff space is closed and proper. It follows that every continuous bijective map from a compact space to a Hausdorff space is a homeomorphism.
  • A metric space (or more generally any first-countable uniform space) is compact if and only if every sequence in the space has a convergent subsequence.
  • A topological space is compact if and only if every net on the space has a convergent subnet.
  • A topological space is compact if and only if every filter on the space has a convergent refinement.
  • A topological space is compact if and only if every ultrafilter on the space is convergent.
  • A topological space can be embedded in a compact Hausdorff space if and only if it is a Tychonoff space.
  • Every non-compact topological space X is a dense subspace of a compact space which has at most one point more than X. (Alexandroff one-point compactification)
  • If the metric space X is compact and an open cover of X is given, then there exists a number δ > 0 such that every subset of X of diameter < δ is contained in some member of the cover. (Lebesgue's number lemma)
  • If a topological space has a sub-base such that every cover of the space by members of the sub-base has a finite subcover, then the space is compact. (Alexander's sub-base theorem)
  • Two compact Hausdorff spaces X1 and X2 are homeomorphic if and only if their rings of continuous real-valued functions C(X1) and C(X2) are isomorphic. (Gelfand-Naimark theorem)

Other forms of compactness

There are a number of topological properties which are equivalent to compactness in metric spaces, but are inequivalent in general topological spaces. These include the following.
While all these conditions are equivalent for metric spaces, in general we have the following implications:
  • Compact spaces are countably compact.
  • Sequentially compact spaces are countably compact.
  • Countably compact spaces are pseudocompact and weakly countably compact.
Not every countably compact space is compact; an example is given by the first uncountable ordinal with the order topology. Not every compact space is sequentially compact; an example is given by 2[0,1], with the product topology. A metric space is called pre-compact or totally bounded if any sequence has a Cauchy subsequence; this can be generalised to uniform spaces. For complete metric spaces this is equivalent to compactness. See relatively compact for the topological version.
Another related notion which (by most definitions) is strictly weaker than compactness is local compactness.



compact in Czech: Kompaktní množina
compact in German: Kompakter Raum
compact in Spanish: Espacio compacto
compact in Esperanto: Kompakta spaco
compact in Persian: مجموعه فشرده
compact in French: Compacité (mathématiques)
compact in Korean: 컴팩트 공간
compact in Italian: Spazio compatto
compact in Hebrew: קומפקטיות
compact in Dutch: Compact
compact in Japanese: コンパクト空間
compact in Polish: Przestrzeń zwarta
compact in Portuguese: Espaço compacto
compact in Russian: Компактное пространство
compact in Swedish: Kompakt
compact in Vietnamese: Compact
compact in Turkish: Tıkızlık
compact in Chinese: 紧集
compact in Classical Chinese: 緊集

Synonyms, Antonyms and Related Words

Spartan, abbreviate, abbreviated, abridged, agree, agree to, agreement, airtight, ammunition box, aphoristic, aposiopestic, ark, attache case, baby, baby-sized, bandolier, bantam, banty, bargain, bargain for, base, billfold, bin, bond, boot, box, brief, briefcase, bristling, brusque, bunched, bunker, caisson, canister, capsula, capsule, cardcase, carton, casket, cedar chest, chest, cigarette case, circumscribe, cist, clamped, clipped, close, close-knit, close-textured, close-woven, clown white, coarct, coffer, coffin, coincident, cold cream, combine, compact, compacted, compendious, comprehensive, compress, compressed, concentrate, concentrated, concise, concrete, concurrent, condense, condensed, cone, congest, congested, conjoint, conjugate, conjunct, consolidate, consolidated, consortium, constrict, constricted, constringe, contract, contracted, convention, cordial understanding, corporate, cosmetics, covenant, cram, crammed, crammed full, cramp, cramped, crate, crawling, crib, crisp, crowd, crowded, curt, curtail, curtal, curtate, cut, decrease, decurtate, dense, densen, densify, diminutive, dispatch box, do a deal, docked, draw, draw in, draw together, drugstore complexion, duodecimo, dustproof, dusttight, elliptic, engage, entente, entente cordiale, envelope, epigrammatic, etui, eye shadow, eyebrow pencil, fast, file, file folder, filing box, firm, folio, foundation, foundation cream, full, gasproof, gastight, gluey, gnomic, greasepaint, hand cream, hand lotion, handy, hard, heavy, hermetic, hermetically sealed, holster, hope chest, housewife, hussy, hutch, impenetrable, impermeable, inclusive, instantaneous, integrate, jam, jam-packed, jammed, joined, joint, kit, knit, knitted, laconic, letter file, lightproof, lighttight, lip rouge, lipstick, little, low, make a deal, makeup, mascara, massive, meaty, miniature, miniaturized, minikin, minimal, minuscule, monstrance, mudpack, mutual understanding, nail polish, narrow, nipped, nonporous, oilproof, oiltight, ostensorium, packed, packet, packing case, pact, paint, pillbox, pinched, pinched-in, pithy, pocket, pocket-sized, pod, pointed, pony, populous, portfolio, powder, powder box, powder puff, press, promise, pruned, pucker, pucker up, puckered, puff, purse, pursed, quiver, rack, rainproof, raintight, ram down, reduce, reliquary, reserved, rouge, sarcophagus, scabbard, sealed, sententious, serried, set, sheath, short, short and sweet, shorten, shortened, shut fast, skippet, small, small-scale, smokeproof, smoketight, snuffbox, snug, socket, solid, solidified, solidify, spectacle case, squeeze, squeezed, staunch, stipulate, stormproof, stormtight, strangle, strangled, strangulate, strangulated, subminiature, substantial, succinct, summary, swarming, synopsized, synoptic, taciturn, talcum, talcum powder, tea chest, teeming, terse, thick, thick-growing, thickset, tight, till, tinderbox, to the point, toy, transaction, transient, truncated, twelvemo, understanding, undertake, unite, vanishing cream, vanity case, vasculum, vest-pocket, viscid, viscose, viscous, wallet, war paint, wasp-waisted, water-repellant, waterproof, watertight, windproof, windtight, wrinkle, wrinkled
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1